您现在所在的位置:>首页 > 生活 > 正文
二重积分典型例题解析(极坐标下的二重积分,二次积分下每次积分的几何意义是什么)
发布时间:2022-09-21 00:34   浏览量:22

这是个好问题,不局限于二重积分和极坐标,对任意多重积分和任意换元都是统一的,雅克比行列式并不是被定义出来的,而恰恰是根据几何意义直接推导出来的必然结果。

n重积分就是在n维几何空间里求n维(超)体积,注意这里的“几何空间”不一定是直观的,其坐标系就是你选用的变量组,可以是x,y,也可以是极坐标,也可以是任何独立变量组,想咋玩儿咋玩儿。

积分其实就是微元的累加,一维的情况微元就是一条无限短的线段dx,二维就是一个无限小的方块dxdy,三维就是无限小的方体dxdydz,… 所以多重积分下换元的核心问题就是解决不同空间坐标系下这些微元(n维微小超体积)之间的度量和转换。

一般来说,任意选取的坐标系(变量组)不一定是线性的,但如果函数对各个变量都是可微的,那么我们看待微元时,就会发现它们无限接近线性空间。

线性几何空间的数学工具当然就是线性代数,显然,在任何一个可微的空间点的极小邻域上,不同坐标系构成的微元方体之间满足线性变换关系,其变换矩阵就是两组变量之间的偏导数关系,这些都是非常清晰的几何意义。

所以,这个变换矩阵当然就是大名鼎鼎的雅可比矩阵,其行列式自然就是雅克比行列式。

矩阵行列式的几何意义就是n维空间上的(有向)超体积,这就是为什么不同坐标系下的积分微元之间的度量转换必须使用雅克比行列式的原因。

回到原题,我们不要仅仅盯着二重积分,极坐标这些特定形式,而可以把问题直接推向n重积分,任意坐标系,直接高屋建瓴的理解其几何本质。

标签:
如何弘扬红色文化(如何传承红色基因,弘扬红色文化) 手机隐藏功能大全(语音助手有哪些隐藏功能) 古代时间表(古代24小时时间表) 株洲综合素质评价(株洲市三三一医院怎么样) 量变引起质变的例子(举例说明事物量变和质变) 应用参数灵敏度(和平精灵敏度参数) 辅助生产费用分配方法(辅助生产费用的归集及分配方法有哪些 赵飞燕外传全文(谒金门,赏析) 标本采集的原则(采集标本前护士应明确什么及什么并向患者做耐 盖米阀门说明书(怎么拆阀门盖)