全微分基本公式(全微分方程的通解公式)
发布时间:2022-09-23 15:10
浏览量:5
您是不是指得这个公式: 方程udx+vdy=0如果满足du/dy=dv/dx则为全微分方程(简便起见偏导我也用导数表示了),其通解为∫udx+∫vdy=0。
这个没什么好推导的,直接带进去就行了。对原方程两端同时乘以du/dy,注意到du/dy=dv/dx,原式可化为udv+vdu=0,注意到d(uv)=udv+vdu,
所以原式可化为d(uv)=0,直接积分就可得uv=C为原方程的通解,其中C为待定常数,等价于∫udx+∫vdy=0。全微分方程之所以被叫做全微分方程,就是因为方程可以化为d(f(x,y))=0的形式,也就是说可以化为二元函数f(x,y)的全微分等于0的形式,方程通解就是f(x,y)=C。
一般情况下解全微分方程没有用公式的,只要你把方程化为d(f(x,y))=0的形式,那么通解就是f(x,y)=C。
标签: